Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Archimedean and p-adic Functional Welch Bounds (2209.06769v1)

Published 12 Sep 2022 in math.NT, math.AG, math.FA, and math.SP

Abstract: We prove the non-Archimedean (resp. p-adic) Banach space version of non-Archimedean (resp. p-adic) Welch bounds recently obtained by M. Krishna. More precisely, we prove following results. 1. Let $\mathbb{K}$ be a non-Archimedean (complete) valued field satisfying $\left|\sum_{j=1}{n}\lambda_j2\right|=\max_{1\leq j \leq n}|\lambda_j|2$ for all $ \lambda_j \in \mathbb{K}, 1\leq j \leq n$, for all $n \in \mathbb{N}.$ Let $\mathcal{X}$ be a $d$-dimensional non-Archimedean Banach space over $\mathbb{K}$. If ${\tau_j}{j=1}n$ is any collection in $\mathcal{X}$ and ${f_j}{j=1}n$ is any collection in $\mathcal{X}*$ (dual of $\mathcal{X}$) satisfying $f_j(\tau_j) =1$ for all $1\leq j \leq n$ and the operator $S_{f, \tau} : \text{Sym}m(\mathcal{X})\ni x \mapsto \sum_{j=1}nf_j{\otimes m}(x)\tau_j{\otimes m} \in \text{Sym}m(\mathcal{X})$, is diagonalizable, then \begin{align} \text{(Non-Archimedean Functional Welch Bounds)} \quad \max_{1\leq j,k \leq n, j \neq k}{|n|, |f_j(\tau_k)f_k(\tau_j)|{m} }\geq \frac{|n|2}{\left|{d+m-1 \choose m}\right| }. \end{align} 2. For a prime $p$, let $\mathbb{Q}p$ be the p-adic number field. Let $\mathcal{X}$ be a $d$-dimensional p-adic Banach space over $\mathbb{Q}_p$. If ${\tau_j}{j=1}n$ is any collection in $\mathcal{X}$ and ${f_j}{j=1}n$ is any collection in $\mathcal{X}*$ (dual of $\mathcal{X}$) satisfying $f_j(\tau_j) =1$ for all $1\leq j \leq n$ and there exists $b \in \mathbb{Q}_p$ such that $ \sum{j=1}{n}f_j{\otimes m}(x) \tau_j{\otimes m} =bx$ for all $ x \in \text{Sym}m(\mathcal{X}),$ then \begin{align} \text{(p-adic Functional Welch Bounds)} \quad \max_{1\leq j,k \leq n, j \neq k}{|n|, |f_j(\tau_k)f_k(\tau_j)|{m} }\geq \frac{|n|2}{\left|{d+m-1 \choose m}\right| }. \end{align} We formulate non-Archimedean functional and p-adic functional Zauner conjectures.

Summary

We haven't generated a summary for this paper yet.