Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modular Welch Bounds with Applications

Published 2 Jan 2022 in math.OA and math.FA | (2201.00319v1)

Abstract: We prove the following two results. \begin{enumerate} \item Let $\mathcal{A}$ be a unital commutative C*-algebra and $\mathcal{A}d$ be the standard Hilbert C*-module over $\mathcal{A}$. Let $n\geq d$. If ${\tau_j}{j=1}n$ is any collection of vectors in $\mathcal{A}d$ such that $\langle \tau_j, \tau_j \rangle =1$, $\forall 1\leq j \leq n$, then \begin{align*} \max _{1\leq j,k \leq n, j\neq k}|\langle \tau_j, \tau_k\rangle ||{2m}\geq \frac{1}{n-1}\left[\frac{n}{{d+m-1\choose m}}-1\right], \quad \forall m \in \mathbb{N}. \end{align*} \item Let $\mathcal{A}$ be a $\sigma$-finite commutative W*-algebra or a commutative AW*-algebra and $\mathcal{E}$ be a rank d Hilbert C*-module over $\mathcal{A}$. Let $n\geq d$. If ${\tau_j}{j=1}n$ is any collection of vectors in $\mathcal{E}$ such that $\langle \tau_j, \tau_j \rangle =1$, $\forall 1\leq j \leq n$, then \begin{align*} \max _{1\leq j,k \leq n, j\neq k}|\langle \tau_j, \tau_k\rangle ||{2m}\geq \frac{1}{n-1}\left[\frac{n}{{d+m-1\choose m}}-1\right], \quad \forall m \in \mathbb{N}. \end{align*} \end{enumerate} Results (1) and (2) reduce to the famous result of Welch [\textit{IEEE Transactions on Information Theory, 1974}] obtained 48 years ago. We introduce the notions of modular frame potential, modular equiangular frames and modular Grassmannian frames. We formulate Zauner's conjecture for Hilbert C*-modules.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.