Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

p-adic Ghobber-Jaming Uncertainty Principle (2506.18913v1)

Published 3 Jun 2025 in math.FA, cs.IT, math-ph, math.IT, math.MP, math.NT, and math.OC

Abstract: Let ${\tau_j}{j=1}n$ and ${\omega_k}{k=1}n$ be two orthonormal bases for a finite dimensional p-adic Hilbert space $\mathcal{X}$. Let $M,N\subseteq {1, \dots, n}$ be such that \begin{align*} \displaystyle \max_{j \in M, k \in N}|\langle \tau_j, \omega_k \rangle|<1, \end{align*} where $o(M)$ is the cardinality of $M$. Then for all $x \in \mathcal{X}$, we show that \begin{align} (1) \quad \quad \quad \quad |x|\leq \left(\frac{1}{1-\displaystyle \max_{j \in M, k \in N}|\langle \tau_j, \omega_k \rangle|}\right)\max\left{\displaystyle \max_{j \in Mc}|\langle x, \tau_j\rangle |, \displaystyle \max_{k \in Nc}|\langle x, \omega_k\rangle |\right}. \end{align} We call Inequality (1) as \textbf{p-adic Ghobber-Jaming Uncertainty Principle}. Inequality (1) is the p-adic version of uncertainty principle obtained by Ghobber and Jaming \textit{[Linear Algebra Appl., 2011]}. We also derive analogues of Inequality (1) for non-Archimedean Banach spaces.

Summary

We haven't generated a summary for this paper yet.