Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete and Continuous Welch Bounds for Banach Spaces with Applications (2201.00980v1)

Published 4 Jan 2022 in math.FA

Abstract: Let ${\tau_j}{j=1}n$ be a collection in a finite dimensional Banach space $\mathcal{X}$ of dimension $d$ and ${f_j}{j=1}n$ be a collection in $\mathcal{X}*$ (dual of $\mathcal{X}$) such that $f_j(\tau_j) =1$, $\forall 1\leq j\leq n$. Let $n\geq d$ and $\text{Sym}m(\mathcal{X})$ be the Banach space of symmetric m-tensors. If the operator $ \text{Sym}m(\mathcal{X})\ni x \mapsto \sum_{j=1}nf_j{\otimes m}(x)\tau_j {\otimes m}\in\text{Sym}m(\mathcal{X})$ is diagonalizable and its eigenvalues are all non negative, then we prove that \begin{align}\label{WELCHBANACHABSTRACT} \max {1\leq j,k \leq n, j\neq k}|f_j(\tau_k)|{2m}\geq \max _{1\leq j,k \leq n, j\neq k}|f_j(\tau_k)f_k(\tau_j)|m \geq\frac{1}{n-1}\left[\frac{n}{{d+m-1\choose m}}-1\right], \quad \forall m \in \mathbb{N}. \end{align} When $ \mathcal{X}=\mathcal{H}$ is a Hilbert space, and $f_j$ is defined by $f_j: \mathcal{H}\ni h \mapsto \langle h, \tau_j \rangle \in \mathbb{K}$ (where $\mathbb{K}$ is $\mathbb{R}$ or $\mathbb{C}$), $\forall 1 \leq j \leq n$, then Inequality (1) reduces to Welch bounds. Thus Inequality (1) improves 48 years old result obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. We also prove the following continuous version of Inequality (1) under certain conditions for measure spaces: \begin{align}\label{CONTINUOUSWELCHBANACHABSTRACT} \sup _{\alpha, \beta \in \Omega, \alpha\neq \beta}|f\alpha(\tau_\beta) |{2m}\geq \sup {\alpha, \beta \in \Omega, \alpha\neq \beta}|f\alpha(\tau_\beta)f_\beta(\tau_\alpha) |{m}\geq \frac{1}{(\mu\times\mu)((\Omega\times\Omega)\setminus\Delta)}\left[\frac{ \mu(\Omega)2}{{d+m-1 \choose m}}-(\mu\times\mu)(\Delta)\right]. \end{align}

Summary

We haven't generated a summary for this paper yet.