p-adic Welch Bounds and p-adic Zauner Conjecture (2209.06763v1)
Abstract: Let $p$ be a prime. For $d\in \mathbb{N}$, let $\mathbb{Q}pd$ be the standard $d$-dimensional p-adic Hilbert space. Let $m \in \mathbb{N}$ and $\text{Sym}m(\mathbb{Q}_pd)$ be the p-adic Hilbert space of symmetric m-tensors. We prove the following result. Let ${\tau_j}{j=1}n$ be a collection in $\mathbb{Q}pd$ satisfying (i) $\langle \tau_j, \tau_j\rangle =1$ for all $1\leq j \leq n$ and (ii) there exists $b \in \mathbb{Q}_p$ satisfying $ \sum{j=1}{n}\langle x, \tau_j\rangle \tau_j =bx$ for all $ x \in \mathbb{Q}d_p.$ Then \begin{align} (1) \quad \quad \quad \max_{1\leq j,k \leq n, j \neq k}{|n|, |\langle \tau_j, \tau_k\rangle|{2m} }\geq \frac{|n|2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (1) as the p-adic version of Welch bounds obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. Inequality (1) differs from the non-Archimedean Welch bound obtained recently by M. Krishna as one can not derive one from another. We formulate p-adic Zauner conjecture.