Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture (2210.07062v1)

Published 28 Aug 2022 in cs.IT, math.FA, math.IT, and math.NT

Abstract: Let $\mathbb{K}$ be a non-Archimedean (complete) valued field satisfying \begin{align*} \left|\sum_{j=1}{n}\lambda_j2\right|=\max_{1\leq j \leq n}|\lambda_j|2, \quad \forall \lambda_j \in \mathbb{K}, 1\leq j \leq n, \forall n \in \mathbb{N}. \end{align*} For $d\in \mathbb{N}$, let $\mathbb{K}d$ be the standard $d$-dimensional non-Archimedean Hilbert space. Let $m \in \mathbb{N}$ and $\text{Sym}m(\mathbb{K}d)$ be the non-Archimedean Hilbert space of symmetric m-tensors. We prove the following result. If ${\tau_j}{j=1}n$ is a collection in $\mathbb{K}d$ satisfying $\langle \tau_j, \tau_j\rangle =1$ for all $1\leq j \leq n$ and the operator $\text{Sym}m(\mathbb{K}d)\ni x \mapsto \sum{j=1}n\langle x, \tau_j{\otimes m}\rangle \tau_j{\otimes m} \in \text{Sym}m(\mathbb{K}d)$ is diagonalizable, then \begin{align} (1) \quad \quad \quad \max_{1\leq j,k \leq n, j \neq k}{|n|, |\langle \tau_j, \tau_k\rangle|{2m} }\geq \frac{|n|2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (1) as the non-Archimedean version of Welch bounds obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. We formulate non-Archimedean Zauner conjecture.

Citations (3)

Summary

We haven't generated a summary for this paper yet.