A Log-Gaussian Cox Process with Sequential Monte Carlo for Line Narrowing in Spectroscopy (2202.13120v2)
Abstract: We propose a statistical model for narrowing line shapes in spectroscopy that are well approximated as linear combinations of Lorentzian or Voigt functions. We introduce a log-Gaussian Cox process to represent the peak locations thereby providing uncertainty quantification for the line narrowing. Bayesian formulation of the method allows for robust and explicit inclusion of prior information as probability distributions for parameters of the model. Estimation of the signal and its parameters is performed using a sequential Monte Carlo algorithm followed by an optimization step to determine the peak locations. Our method is validated using a simulation study and applied to a mineralogical Raman spectrum.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.