Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Feature Extraction for Generalized Zero-shot Learning (2112.14478v1)

Published 29 Dec 2021 in cs.CV

Abstract: Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes using the attribute. In this paper, we put forth a new GZSL technique that improves the GZSL classification performance greatly. Key idea of the proposed approach, henceforth referred to as semantic feature extraction-based GZSL (SE-GZSL), is to use the semantic feature containing only attribute-related information in learning the relationship between the image and the attribute. In doing so, we can remove the interference, if any, caused by the attribute-irrelevant information contained in the image feature. To train a network extracting the semantic feature, we present two novel loss functions, 1) mutual information-based loss to capture all the attribute-related information in the image feature and 2) similarity-based loss to remove unwanted attribute-irrelevant information. From extensive experiments using various datasets, we show that the proposed SE-GZSL technique outperforms conventional GZSL approaches by a large margin.

Citations (26)

Summary

We haven't generated a summary for this paper yet.