Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Bayesian Information Criterion for Linear Mixed-effects Models (2104.14725v1)

Published 30 Apr 2021 in stat.AP

Abstract: The use of Bayesian information criterion (BIC) in the model selection procedure is under the assumption that the observations are independent and identically distributed (i.i.d.). However, in practice, we do not always have i.i.d. samples. For example, clustered observations tend to be more similar within the same group, and longitudinal data is collected by measuring the same subject repeatedly. In these scenarios, the assumption in BIC is not satisfied. The concept of effective sample size is brought up and improved BIC is defined by replacing the sample size in the original BIC expression with the effective sample size, which will give us a better theoretical foundation in the circumstance that mixed-effects models involve. Numerical experiment results are also given by comparing the performance of our new BIC with other widely used BICs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.