Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian information criteria for clustering normally distributed data (2008.03974v6)

Published 10 Aug 2020 in math.ST, stat.AP, stat.ME, and stat.TH

Abstract: Maximum likelihood estimates (MLEs) are asymptotically normally distributed, and this property is used in meta-analyses to test the heterogeneity of estimates, either for a single cluster or for several sub-groups. More recently, MLEs for associations between risk factors and diseases have been hierarchically clustered to search for diseases with shared underlying causes, but an objective statistical criterion is needed to determine the number and composition of clusters. To tackle this problem, conventional statistical tests are briefly reviewed, before considering the posterior distribution for a partition of data into clusters. The posterior distribution is calculated by marginalising out the unknown cluster centres, and is different to the likelihood associated with mixture models. The calculation is equivalent to that used to obtain the Bayesian Information Criterion (BIC), but is exact, without a Laplace approximation. The result includes a sum of squares term, and terms that depend on the number and composition of clusters, that penalise the number of free parameters in the model. The usual BIC is shown to be unsuitable for clustering applications unless the number of items in each individual cluster is sufficiently large.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.