Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Model Selection for Misspecified Models in Linear Regression (1706.03343v2)

Published 11 Jun 2017 in stat.ME

Abstract: While the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) are powerful tools for model selection in linear regression, they are built on different prior assumptions and thereby apply to different data generation scenarios. We show that in the finite-dimensional case their respective assumptions can be unified within an augmented model-plus-noise space and construct a prior in this space which inherits the beneficial properties of both AIC and BIC. This allows us to adapt the BIC to be robust against misspecified models where the signal to noise ratio is low.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.