Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Discrete Maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation (2104.11813v1)

Published 23 Apr 2021 in math.NA and cs.NA

Abstract: We consider solving a generalized Allen-Cahn equation coupled with a passive convection for a given incompressible velocity field. The numerical scheme consists of the first order accurate stabilized implicit explicit time discretization and a fourth order accurate finite difference scheme, which is obtained from the finite difference formulation of the $Q2$ spectral element method. We prove that the discrete maximum principle holds under suitable mesh size and time step constraints. The same result also applies to construct a bound-preserving scheme for any passive convection with an incompressible velocity field.

Citations (20)

Summary

We haven't generated a summary for this paper yet.