2000 character limit reached
Fairness seen as Global Sensitivity Analysis (2103.04613v2)
Published 8 Mar 2021 in math.ST, stat.ME, and stat.TH
Abstract: Ensuring that a predictor is not biased against a sensible feature is the key of Fairness learning. Conversely, Global Sensitivity Analysis is used in numerous contexts to monitor the influence of any feature on an output variable. We reconcile these two domains by showing how Fairness can be seen as a special framework of Global Sensitivity Analysis and how various usual indicators are common between these two fields. We also present new Global Sensitivity Analysis indices, as well as rates of convergence, that are useful as fairness proxies.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.