Papers
Topics
Authors
Recent
2000 character limit reached

Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains

Published 20 Nov 2020 in math.PR, math.ST, stat.ML, and stat.TH | (2011.11435v4)

Abstract: We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $\pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{\'e} who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein's type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.