Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three rates of convergence or separation via U-statistics in a dependent framework (2106.12796v2)

Published 24 Jun 2021 in math.ST, stat.ML, and stat.TH

Abstract: Despite the ubiquity of U-statistics in modern Probability and Statistics, their non-asymptotic analysis in a dependent framework may have been overlooked. In a recent work, a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains has been proved. In this paper, we put this theoretical breakthrough into action by pushing further the current state of knowledge in three different active fields of research. First, we establish a new exponential inequality for the estimation of spectra of trace class integral operators with MCMC methods. The novelty is that this result holds for kernels with positive and negative eigenvalues, which is new as far as we know. In addition, we investigate generalization performance of online algorithms working with pairwise loss functions and Markov chain samples. We provide an online-to-batch conversion result by showing how we can extract a low risk hypothesis from the sequence of hypotheses generated by any online learner. We finally give a non-asymptotic analysis of a goodness-of-fit test on the density of the invariant measure of a Markov chain. We identify some classes of alternatives over which our test based on the $L_2$ distance has a prescribed power.

Summary

We haven't generated a summary for this paper yet.