Papers
Topics
Authors
Recent
2000 character limit reached

Efron-Stein PAC-Bayesian Inequalities

Published 4 Sep 2019 in cs.LG and stat.ML | (1909.01931v2)

Abstract: We prove semi-empirical concentration inequalities for random variables which are given as possibly nonlinear functions of independent random variables. These inequalities describe concentration of random variable in terms of the data/distribution-dependent Efron-Stein (ES) estimate of its variance and they do not require any additional assumptions on the moments. In particular, this allows us to state semi-empirical Bernstein type inequalities for general functions of unbounded random variables, which gives user-friendly concentration bounds for cases where related methods (e.g. bounded differences) might be more challenging to apply. We extend these results to Efron-Stein PAC-Bayesian inequalities which hold for arbitrary probability kernels that define a random, data-dependent choice of the function of interest. Finally, we demonstrate a number of applications, including PAC-Bayesian generalization bounds for unbounded loss functions, empirical Bernstein type generalization bounds, new truncation-free bounds for off-policy evaluation with Weighted Importance Sampling (WIS), and off-policy PAC-Bayesian learning with WIS.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.