Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Matrix Expander Chernoff Bound (1704.03864v3)

Published 12 Apr 2017 in math.PR, cs.CC, and cs.DS

Abstract: We prove a Chernoff-type bound for sums of matrix-valued random variables sampled via a random walk on an expander, confirming a conjecture due to Wigderson and Xiao. Our proof is based on a new multi-matrix extension of the Golden-Thompson inequality which improves in some ways the inequality of Sutter, Berta, and Tomamichel, and may be of independent interest, as well as an adaptation of an argument for the scalar case due to Healy. Secondarily, we also provide a generic reduction showing that any concentration inequality for vector-valued martingales implies a concentration inequality for the corresponding expander walk, with a weakening of parameters proportional to the squared mixing time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com