Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Privug: Using Probabilistic Programming for Quantifying Leakage in Privacy Risk Analysis (2011.08742v5)

Published 17 Nov 2020 in cs.CR

Abstract: Disclosure of data analytics results has important scientific and commercial justifications. However, no data shall be disclosed without a diligent investigation of risks for privacy of subjects. Privug is a tool-supported method to explore information leakage properties of data analytics and anonymization programs. In Privug, we reinterpret a program probabilistically, using off-the-shelf tools for Bayesian inference to perform information-theoretic analysis of the information flow. For privacy researchers, Privug provides a fast, lightweight way to experiment with privacy protection measures and mechanisms. We show that Privug is accurate, scalable, and applicable to a range of leakage analysis scenarios.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube