Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Disclosure with Non-zero Leakage and Non-invertible Leakage Matrix (2107.07484v1)

Published 15 Jul 2021 in cs.IT and math.IT

Abstract: We study a statistical signal processing privacy problem, where an agent observes useful data $Y$ and wants to reveal the information to a user. Since the useful data is correlated with the private data $X$, the agent employs a privacy mechanism to generate data $U$ that can be released. We study the privacy mechanism design that maximizes the revealed information about $Y$ while satisfying a strong $\ell_1$-privacy criterion. When a sufficiently small leakage is allowed, we show that the optimizer vectors of the privacy mechanism design problem have a specific geometry, i.e., they are perturbations of fixed vector distributions. This geometrical structure allows us to use a local approximation of the conditional entropy. By using this approximation the original optimization problem can be reduced to a linear program so that an approximate solution for privacy mechanism can be easily obtained. The main contribution of this work is to consider non-zero leakage with a non-invertible leakage matrix. In an example inspired by water mark application, we first investigate the accuracy of the approximation. Then, we employ different measures for utility and privacy leakage to compare the privacy-utility trade-off using our approach with other methods. In particular, it has been shown that by allowing small leakage, significant utility can be achieved using our method compared to the case where no leakage is allowed.

Citations (26)

Summary

We haven't generated a summary for this paper yet.