Privacy with Good Taste: A Case Study in Quantifying Privacy Risks in Genetic Scores (2208.12497v1)
Abstract: Analysis of genetic data opens up many opportunities for medical and scientific advances. The use of phenotypic information and polygenic risk scores to analyze genetic data is widespread. Most work on genetic privacy focuses on basic genetic data such as SNP values and specific genotypes. In this paper, we introduce a novel methodology to quantify and prevent privacy risks by focusing on polygenic scores and phenotypic information. Our methodology is based on the tool-supported privacy risk analysis method Privug. We demonstrate the use of Privug to assess privacy risks posed by disclosing a polygenic trait score for bitter taste receptors, encoded by TAS2R38 and TAS2R16, to a person's privacy in regards to their ethnicity. We provide an extensive privacy risks analysis of different programs for genetic data disclosure: taster phenotype, tasting polygenic score, and a polygenic score distorted with noise. Finally, we discuss the privacy/utility trade-offs of the polygenic score.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.