Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal Information Leakage based Privacy Preserving Data Disclosure Mechanisms (1904.01147v2)

Published 1 Apr 2019 in cs.IT, cs.CR, and math.IT

Abstract: It is often necessary to disclose training data to the public domain, while protecting privacy of certain sensitive labels. We use information theoretic measures to develop such privacy preserving data disclosure mechanisms. Our mechanism involves perturbing the data vectors in a manner that strikes a balance in the privacy-utility trade-off. We use maximal information leakage between the output data vector and the confidential label as our privacy metric. We first study the theoretical Bernoulli-Gaussian model and study the privacy-utility trade-off when only the mean of the Gaussian distributions can be perturbed. We show that the optimal solution is the same as the case when the utility is measured using probability of error at the adversary. We then consider an application of this framework to a data driven setting and provide an empirical approximation to the Sibson mutual information. By performing experiments on the MNIST and FERG data-sets, we show that our proposed framework achieves equivalent or better privacy than previous methods based on mutual information.

Citations (5)

Summary

We haven't generated a summary for this paper yet.