Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SParSH-AMG: A library for hybrid CPU-GPU algebraic multigrid and preconditioned iterative methods (2007.00056v1)

Published 30 Jun 2020 in cs.MS

Abstract: Hybrid CPU-GPU algorithms for Algebraic Multigrid methods (AMG) to efficiently utilize both CPU and GPU resources are presented. In particular, hybrid AMG framework focusing on minimal utilization of GPU memory with performance on par with GPU-only implementations is developed. The hybrid AMG framework can be tuned to operate at a significantly lower GPU-memory, consequently, enables to solve large algebraic systems. Combining the hybrid AMG framework as a preconditioner with Krylov Subspace solvers like Conjugate Gradient, BiCG methods provides a solver stack to solve a large class of problems. The performance of the proposed hybrid AMG framework is analysed for an array of matrices with different properties and size. Further, the performance of CPU-GPU algorithms are compared with the GPU-only implementations to illustrate the significantly lower memory requirements.

Citations (4)

Summary

We haven't generated a summary for this paper yet.