Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Performance of Algebraic Multigrid Domain Decomposition (AMG-DD) (1906.10575v2)

Published 25 Jun 2019 in cs.MS, cs.DC, cs.NA, and math.NA

Abstract: Algebraic multigrid (AMG) is a widely used scalable solver and preconditioner for large-scale linear systems resulting from the discretization of a wide class of elliptic PDEs. While AMG has optimal computational complexity, the cost of communication has become a significant bottleneck that limits its scalability as processor counts continue to grow on modern machines. This paper examines the design, implementation, and parallel performance of a novel algorithm, Algebraic Multigrid Domain Decomposition (AMG-DD), designed specifically to limit communication. The goal of AMG-DD is to provide a low-communication alternative to standard AMG V-cycles by trading some additional computational overhead for a significant reduction in communication cost. Numerical results show that AMG-DD achieves superior accuracy per communication cost compared to AMG, and speedup over AMG is demonstrated on a large GPU cluster.

Citations (3)

Summary

We haven't generated a summary for this paper yet.