Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-GPU aggregation-based AMG preconditioner for iterative linear solvers (2303.02352v1)

Published 4 Mar 2023 in cs.DC and cs.MS

Abstract: We present and release in open source format a sparse linear solver which efficiently exploits heterogeneous parallel computers. The solver can be easily integrated into scientific applications that need to solve large and sparse linear systems on modern parallel computers made of hybrid nodes hosting NVIDIA Graphics Processing Unit (GPU) accelerators. The work extends our previous efforts in the exploitation of a single GPU accelerator and proposes an implementation, based on the hybrid MPI-CUDA software environment, of a Krylov-type linear solver relying on an efficient Algebraic MultiGrid (AMG) preconditioner already available in the BootCMatchG library. Our design for the hybrid implementation has been driven by the best practices for minimizing data communication overhead when multiple GPUs are employed, yet preserving the efficiency of the single GPU kernels. Strong and weak scalability results on well-known benchmark test cases of the new version of the library are discussed. Comparisons with the Nvidia AmgX solution show an improvement of up to 2.0x in the solve phase.

Citations (5)

Summary

We haven't generated a summary for this paper yet.