Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Closing the Training/Inference Gap for Deep Attractor Networks (1911.02091v1)

Published 5 Nov 2019 in eess.AS and cs.SD

Abstract: This paper improves the deep attractor network (DANet) approach by closing its gap between training and inference. During training, DANet relies on attractors, which are computed from the ground truth separations. As this information is not available at inference time, the attractors have to be estimated, which is typically done by k-means. This results in two mismatches: The first mismatch stems from using classical k-means with Euclidean norm, whereas masks are computed during training using the dot product similarity. By using spherical k-means instead, we can show that we can already improve the performance of DANet. Furthermore, we show that we can fully incorporate k-means clustering into the DANet training. This yields the benefit of having no training/inference gap and consequently results in an scale-invariant signal-to-distortion ratio (SI-SDR) improvement of 1.1dB on the Wall Street Journal corpus (WSJ0).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.