Papers
Topics
Authors
Recent
2000 character limit reached

Maxwells Demon: Controlling Entropy via Discrete Ricci Flow Over Networks (1910.04560v1)

Published 7 Oct 2019 in eess.SY, cs.SI, and cs.SY

Abstract: In this work, we propose to utilize discrete graph Ricci flow to alter network entropy through feedback control. Given such feedback input can reverse entropic changes, we adapt the moniker of Maxwells Demon to motivate our approach. In particular, it has been recently shown that Ricci curvature from geometry is intrinsically connected to Boltzmann entropy as well as functional robustness of networks or the ability to maintain functionality in the presence of random fluctuations. From this, the discrete Ricci flow provides a natural avenue to rewire a particular networks underlying geometry to improve throughout and resilience. Due to the real-world setting for which one may be interested in imposing nonlinear constraints amongst particular agents to understand the network dynamic evolution, controlling discrete Ricci flow may be necessary (e.g., we may seek to understand the entropic dynamics and curvature flow between two networks as opposed to solely curvature shrinkage). In turn, this can be formulated as a natural control problem for which we employ feedback control towards discrete Ricci-based flow and show that under certain discretization, namely Ollivier-Ricci curvature, one can show stability via Lyapunov analysis. We conclude with preliminary results with remarks on potential applications that will be a subject of future work.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.