Drinfel'd-Sokolov construction and exact solutions of vector modified KdV hierarchy (1910.00885v1)
Abstract: We construct the hierarchy of a multi-component generalisation of modified KdV equation and find exact solutions to its associated members. The construction of the hierarchy and its conservation laws is based on the Drinfel'd-Sokolov scheme, however, in our case the Lax operator contains a constant non-regular element of the underlying Lie algebra. We also derive the associated recursion operator of the hierarchy using the symmetry structure of the Lax operators. Finally, using the rational dressing method, we obtain the one soliton solution, and we find the one breather solution of general rank in terms of determinants.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.