Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems (1906.00325v1)

Published 2 Jun 2019 in stat.ML, cs.LG, and physics.bio-ph

Abstract: Time-lagged autoencoders (TAEs) have been proposed as a deep learning regression-based approach to the discovery of slow modes in dynamical systems. However, a rigorous analysis of nonlinear TAEs remains lacking. In this work, we discuss the capabilities and limitations of TAEs through both theoretical and numerical analyses. Theoretically, we derive bounds for nonlinear TAE performance in slow mode discovery and show that in general TAEs learn a mixture of slow and maximum variance modes. Numerically, we illustrate cases where TAEs can and cannot correctly identify the leading slowest mode in two example systems: a 2D "Washington beltway" potential and the alanine dipeptide molecule in explicit water. We also compare the TAE results with those obtained using state-free reversible VAMPnets (SRVs) as a variational-based neural network approach for slow modes discovery, and show that SRVs can correctly discover slow modes where TAEs fail.

Citations (36)

Summary

We haven't generated a summary for this paper yet.