Papers
Topics
Authors
Recent
2000 character limit reached

Tucker Decomposition Network: Expressive Power and Comparison (1905.09635v1)

Published 23 May 2019 in cs.LG

Abstract: Deep neural networks have achieved a great success in solving many machine learning and computer vision problems. The main contribution of this paper is to develop a deep network based on Tucker tensor decomposition, and analyze its expressive power. It is shown that the expressiveness of Tucker network is more powerful than that of shallow network. In general, it is required to use an exponential number of nodes in a shallow network in order to represent a Tucker network. Experimental results are also given to compare the performance of the proposed Tucker network with hierarchical tensor network and shallow network, and demonstrate the usefulness of Tucker network in image classification problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.