Nonlinear Dirichlet problems with unilateral growth on the reaction
Abstract: We consider a nonlinear Dirichlet problem driven by the $p$-Laplace differential operator with a reaction which has a subcritical growth restriction only from above. We prove two multiplicity theorems producing three nontrivial solutions, two of constant sign and the third nodal. The two multiplicity theorems differ on the geometry near the origin. In the semilinear case (that is, $p=2$), using Morse theory (critical groups), we produce a second nodal solution for a total of four nontrivial solutions. As an illustration, we show that our results incorporate and significantly extend the multiplicity results existing for a class of parametric, coercive Dirichlet problems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.