Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Symplectic cohomology rings of affine varieties in the topological limit (1811.03609v2)

Published 8 Nov 2018 in math.SG and math.AG

Abstract: We construct a multiplicative spectral sequence converging to the symplectic cohomology ring of any affine variety $X$, with first page built out of topological invariants associated to strata of any fixed normal crossings compactification $(M,\mathbf{D})$ of $X$. We exhibit a broad class of pairs $(M,\mathbf{D})$ (characterized by the absence of relative holomorphic spheres or vanishing of certain relative GW invariants) for which the spectral sequence degenerates, and a broad subclass of pairs (similarly characterized) for which the ring structure on symplectic cohomology can also be described topologically. Sample applications include: (a) a complete topological description of the symplectic cohomology ring of the complement, in any projective $M$, of the union of sufficiently many generic ample divisors whose homology classes span a rank one subspace, (b) complete additive and partial multiplicative computations of degree zero symplectic cohomology rings of many log Calabi-Yau varieties, and (c) a proof in many cases that symplectic cohomology is finitely generated as a ring. A key technical ingredient in our results is a logarithmic version of the PSS morphism, introduced in our earlier work [GP1].

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube