Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics (1807.06385v2)

Published 17 Jul 2018 in gr-qc

Abstract: We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into General Relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this correspondence, a Born-Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.