Papers
Topics
Authors
Recent
2000 character limit reached

Quasi-sure duality for multi-dimensional martingale optimal transport (1805.01757v1)

Published 4 May 2018 in math.PR

Abstract: Based on the multidimensional irreducible paving of De March & Touzi, we provide a multi-dimensional version of the quasi sure duality for the martingale optimal transport problem, thus extending the result of Beiglb\"ock, Nutz & Touzi. Similar, we also prove a disintegration result which states a natural decomposition of the martingale optimal transport problem on the irreducible components, with pointwise duality verified on each component. As another contribution, we extend the martingale monotonicity principle to the present multi-dimensional setting. Our results hold in dimensions 1, 2, and 3 provided that the target measure is dominated by the Lebesgue measure. More generally, our results hold in any dimension under an assumption which is implied by the Continuum Hypothesis. Finally, in contrast with the one-dimensional setting of Beiglb\"ock, Lim & Obloj, we provide an example which illustrates that the smoothness of the coupling function does not imply that pointwise duality holds for compactly supported measures.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.