Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A reinforcement learning algorithm for building collaboration in multi-agent systems (1711.10574v2)

Published 28 Nov 2017 in cs.AI

Abstract: This paper presents a proof-of concept study for demonstrating the viability of building collaboration among multiple agents through standard Q learning algorithm embedded in particle swarm optimisation. Collaboration is formulated to be achieved among the agents via some sort competition, where the agents are expected to balance their action in such a way that none of them drifts away of the team and none intervene any fellow neighbours territory. Particles are devised with Q learning algorithm for self training to learn how to act as members of a swarm and how to produce collaborative/collective behaviours. The produced results are supportive to the algorithmic structures suggesting that a substantive collaboration can be build via proposed learning algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.