2000 character limit reached
The closure of planar diffeomorphisms in Sobolev spaces (1710.07228v1)
Published 19 Oct 2017 in math.AP
Abstract: We characterize the (sequentially) weak and strong closure of planar diffeomorphisms in the Sobolev topology and we show that they always coincide. We also provide some sufficient condition for a planar map to be approximable by diffeomorphisms in terms of the connectedness of its counter-images, in the spirit of Young's characterisation of monotone functions. We finally show that the closure of diffeomorphisms in the Sobolev topology is strictly contained in the class INV introduced by Muller and Spector.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.