2000 character limit reached
Chern-Simons Theory and Dynamics of Composite Fermions (1704.07712v3)
Published 25 Apr 2017 in cond-mat.str-el and cond-mat.mes-hall
Abstract: We propose a (4+1) dimensional Chern-Simons field theoretical description of the fractional quantum Hall effect. It suggests that composite fermions reside on a momentum manifold with a nonzero Chern number. Based on derivations from microscopic wave functions, we further show that the momentum manifold has a uniformly distributed Berry curvature. As a result, composite fermions do not follow the ordinary Newtonian dynamics as commonly believed, but the more general symplectic one. For a Landau level with the particle-hole symmetry, the theory correctly predicts its Hall conductance at half-filling as well as the symmetry between an electron filling fraction and its hole counterpart.