Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Composite fermi liquids in the lowest Landau level (1604.06807v2)

Published 22 Apr 2016 in cond-mat.str-el and cond-mat.mes-hall

Abstract: We study composite fermi liquid (CFL) states in the lowest Landau level (LLL) limit at a generic filling $\nu = \frac{1}{n}$. We begin with the old observation that, in compressible states, the composite fermion in the lowest Landau level should be viewed as a charge-neutral particle carrying vorticity. This leads to the absence of a Chern-Simons term in the effective theory of the CFL. We argue here that instead a Berry curvature should be enclosed by the fermi surface of composite fermions, with the total Berry phase fixed by the filling fraction $\phi_B=-2\pi\nu$. We illustrate this point with the CFL of fermions at filling fractions $\nu=1/2q$ and (single and two-component) bosons at $\nu=1/(2q+1)$. The Berry phase leads to sharp consequences in the transport properties including thermal and spin Hall conductances, which in the RPA approximation are distinct from the standard Halperin-Lee-Read predictions. We emphasize that these results only rely on the LLL limit, and do not require particle-hole symmetry, which is present microscopically only for fermions at $\nu=1/2$. Nevertheless, we show that the existing LLL theory of the composite fermi liquid for bosons at $\nu=1$ does have an emergent particle-hole symmetry. We interpret this particle-hole symmetry as a transformation between the empty state at $\nu=0$ and the boson integer quantum hall state at $\nu=2$. This understanding enables us to define particle-hole conjugates of various bosonic quantum Hall states which we illustrate with the bosonic Jain and Pfaffian states. The bosonic particle-hole symmetry can be realized exactly on the surface of a three-dimensional boson topological insulator. We also show that with the particle-hole and spin $SU(2)$ rotation symmetries, there is no gapped topological phase for bosons at $\nu=1$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)