Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Non-commutative field theory and composite Fermi Liquids in some quantum Hall systems (2006.01282v2)

Published 1 Jun 2020 in cond-mat.str-el and hep-th

Abstract: Composite Fermi liquid metals arise at certain special filling fractions in the quantum Hall regime and play an important role as parent states of gapped states with quantized Hall response. They have been successfully described by the Halperin-Lee-Read (HLR) theory of a Fermi surface of composite fermions coupled to a $U(1)$ gauge field with a Chern-Simons term. However, the validity of the HLR description when the microscopic system is restricted to a single Landau has not been clear. Here for the specific case of bosons at filling $\nu = 1$, we build on earlier work from the 1990s to formulate a low energy description that takes the form of a {\em non-commutative} field theory. This theory has a Fermi surface of composite fermions coupled to a $U(1)$ gauge field with no Chern-Simons term but with the feature that all fields are defined in a non-commutative spacetime. An approximate mapping of the long wavelength, small amplitude gauge fluctuations yields a commutative effective field theory which, remarkably, takes the HLR form but with microscopic parameters correctly determined by the interaction strength. Extensions to some other composite fermi liquids, and to other related states of matter are discussed.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)