Papers
Topics
Authors
Recent
2000 character limit reached

Spatio-temporal Aware Non-negative Component Representation for Action Recognition (1608.07664v1)

Published 27 Aug 2016 in cs.CV

Abstract: This paper presents a novel mid-level representation for action recognition, named spatio-temporal aware non-negative component representation (STANNCR). The proposed STANNCR is based on action component and incorporates the spatial-temporal information. We first introduce a spatial-temporal distribution vector (STDV) to model the distributions of local feature locations in a compact and discriminative manner. Then we employ non-negative matrix factorization (NMF) to learn the action components and encode the video samples. The action component considers the correlations of visual words, which effectively bridge the sematic gap in action recognition. To incorporate the spatial-temporal cues for final representation, the STDV is used as the part of graph regularization for NMF. The fusion of spatial-temporal information makes the STANNCR more discriminative, and our fusion manner is more compact than traditional method of concatenating vectors. The proposed approach is extensively evaluated on three public datasets. The experimental results demonstrate the effectiveness of STANNCR for action recognition.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.