Papers
Topics
Authors
Recent
2000 character limit reached

A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows (1602.04457v3)

Published 14 Feb 2016 in math.AP

Abstract: In this article we set up a splitting variant of the JKO scheme in order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and defined on the space of positive Radon measure with varying masses. We perform successively a time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao distance. Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the standard class of energy functionals under suitable compactness assumptions, and investigate in details the case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive and well adapted to available numerical solvers.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.