Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Locally Weighted Learning for Naive Bayes Classifier (1412.6741v1)

Published 21 Dec 2014 in stat.ML and cs.LG

Abstract: As a consequence of the strong and usually violated conditional independence assumption (CIA) of naive Bayes (NB) classifier, the performance of NB becomes less and less favorable compared to sophisticated classifiers when the sample size increases. We learn from this phenomenon that when the size of the training data is large, we should either relax the assumption or apply NB to a "reduced" data set, say for example use NB as a local model. The latter approach trades the ignored information for the robustness to the model assumption. In this paper, we consider using NB as a model for locally weighted data. A special weighting function is designed so that if CIA holds for the unweighted data, it also holds for the weighted data. The new method is intuitive and capable of handling class imbalance. It is theoretically more sound than the locally weighted learners of naive Bayes that base classification only on the $k$ nearest neighbors. Empirical study shows that the new method with appropriate choice of parameter outperforms seven existing classifiers of similar nature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.