Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regularity of Eigenstates in Regular Mourre Theory (1006.0410v2)

Published 2 Jun 2010 in math-ph, math.FA, math.MP, and quant-ph

Abstract: The present paper gives an abstract method to prove that possibly embedded eigenstates of a self-adjoint operator $H$ lie in the domain of the $k{th}$ power of a conjugate operator $A$. Conjugate means here that $H$ and $A$ have a positive commutator locally near the relevant eigenvalue in the sense of Mourre. The only requirement is $C{k+1}(A)$ regularity of $H$. Regarding integer $k$, our result is optimal. Under a natural boundedness assumption of the multiple commutators we prove that the eigenstate 'dilated' by $\exp(i\theta A)$ is analytic in a strip around the real axis. In particular, the eigenstate is an analytic vector with respect to $A$. Natural applications are 'dilation analytic' systems satisfying a Mourre estimate, where our result can be viewed as an abstract version of a theorem due to Balslev and Combes. As a new application we consider the massive Spin-Boson Model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube