Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
127 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Relative Entropy and Statistics (0808.4111v2)

Published 29 Aug 2008 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Formalising the confrontation of opinions (models) to observations (data) is the task of Inferential Statistics. Information Theory provides us with a basic functional, the relative entropy (or Kullback-Leibler divergence), an asymmetrical measure of dissimilarity between the empirical and the theoretical distributions. The formal properties of the relative entropy turn out to be able to capture every aspect of Inferential Statistics, as illustrated here, for simplicity, on dices (= i.i.d. process with finitely many outcomes): refutability (strict or probabilistic): the asymmetry data / models; small deviations: rejecting a single hypothesis; competition between hypotheses and model selection; maximum likelihood: model inference and its limits; maximum entropy: reconstructing partially observed data; EM-algorithm; flow data and gravity modelling; determining the order of a Markov chain.

Citations (26)

Summary

We haven't generated a summary for this paper yet.