Weyl’s two-term asymptotic (Weyl’s conjecture) for the Dirichlet counting function
Establish the conjectured two-term asymptotic expansion for the Dirichlet eigenvalue counting function on domains with piecewise smooth boundary: prove that, as λ → ∞, N^D_Ω(λ) = (|Ω| ω(n) / (2π)^n) λ^{n/2} − (ℋ^{n−1}(∂Ω) / (2^{n+1} π^{(d−1)/2} Γ((n+1)/2))) λ^{(n−1)/2} + o(λ^{(n−1)/2}), where N^D_Ω(λ) := #{λ_k(Ω) : λ_k(Ω) < λ}, ℋ^{n−1}(∂Ω) is the (n−1)-dimensional Hausdorff measure of the boundary, and ω(n) is the volume of the unit ball in ℝ^n.
References
Recall that Weyl's conjecture on sharper asymptotic behavior of Dirichlet eigenvalue states for domains with piecewise smooth boundary that \begin{align}\label{conj-weyl} \mathcal{N}D_{\Omega}(\lambda)=\frac{|\Omega|\omega(n)}{(2\pi){n} \lambda{n/2}-\frac{\mathcal{H}{n-1}(\partial\Omega)}{2{n+1} \pi{\frac{d-1}{2}\Gamma(\frac{n+1}{2})}\lambda{\frac{n-1}{2}+o(\lambda{\frac{n-1}2}), \end{align} where $\mathcal{N}D_{\Omega}(\lambda)$ is the counting function $$\mathcal{N}D_{\Omega}(\lambda):=#{\lambda_k(\Omega):\,\lambda_k(\Omega)<\lambda}.$$