Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved Berezin-Li-Yau inequality and Kröger inequality and consequences (2507.20330v1)

Published 27 Jul 2025 in math.SP, math-ph, math.AP, math.CA, and math.MP

Abstract: We provide quantitative improvements to the Berezin-Li-Yau inequality and the Kr\"oger inequality, in $\mathbb{R}n$, $n\ge 2$. The improvement on Kr\"oger's inequality resolves an open question raised by Weidl from 2006. The improvements allow us to show that, for any open bounded domains, there are infinite many Dirichlet eigenvalues satisfying P\'olya's conjecture if $n\ge 3$, and infinite many Neumann eigenvalues satisfying P\'olya's conjecture if $n\ge 5$ and the Neumann spectrum is discrete.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: