Classify survival probability in the borderline law-of-iterated-logarithm regime
Determine whether the survival probability P(τ < ∞) equals 1 or is strictly less than 1 for the first passage time τ of the geometric Brownian motion V_t = V_0 exp((μ − σ^2/2) t + σ W_t) through a continuous positive barrier B(t) with B(0) = K < V_0, under the simultaneous conditions: (i) limsup_{t→∞} B(t) / [K exp((μ − σ^2/2) t − σ sqrt(2 t ln ln t))] ≥ 1, (ii) liminf_{t→∞} B(t) / [K exp((μ − σ^2/2) t − σ sqrt(2 t ln ln t))] < 1, and (iii) limsup_{t→∞} B(t) / [K exp((μ − σ^2/2) t + σ sqrt(2 t ln ln t))] ≤ 1, in order to resolve the classification between P(τ < ∞) = 1 and 0 < P(τ < ∞) < 1.
References
we cannot deduce if 0 < \mathbb{P}(\tau < \infty) < 1 or \mathbb{P}(\tau < \infty) = 1 (we only know that 0 < \mathbb{P}(\tau < \infty) \le 1). Thus, more conditions must be added to ascertain the correct classification in these cases (see Section~\ref{sec:examples}).