Limit law for the maximal local time (frequent points) of planar random walk
Establish the limiting distribution of the centered maximum of the local time of a simple random walk on the wired domain D_N ∪ {ρ}, started at the origin and stopped at the hitting time τ_ρ of ρ; specifically, determine constants \bar{\alpha} > 0 and an a.s.-finite positive random variable \mathfrak{Z}^D such that, for every u ∈ R, P^0( max_{x ∈ D_N} \ell_{\tau_\varrho}(x) ≤ (2/\sqrt{\pi})\,\log N − (1/\sqrt{\pi})\,\log\log N + u ) converges to E\big( exp{− \mathfrak{Z}^D e^{− \bar{\alpha} u}} \big).
References
Conjecture 5.3 There exists \bar\alpha\in(0,\infty) and, for each admissible domain~D containing the origin, there exists an a.s.-finite and positive random variable~\eusb ZD such that \begin{equation} P0\biggl(\,\max_{x\in D_N}\ell_{\tau_\varrho}(x)\le\frac2{\sqrt\pi}\log N-\frac1{\sqrt\pi}\log\log N+u\biggr)\,\,\underset{N\to\infty}\longrightarrow\,\,E\bigl({-\eusb ZD{-\bar\alpha u}\bigr) \end{equation} holds for each~u\in\mathbb R.