Monodromy of generalized Lame equations with Darboux-Treibich-Verdier potentials: A universal law (2404.01879v1)
Abstract: The Darboux-Treibich-Verdier (DTV) potential $\sum_{k=0}{3}n_{k}(n_{k}+1)\wp(z+\tfrac{ \omega_{k}}{2};\tau)$ is well-known as doubly-periodic solutions of the stationary KdV hierarchy (Treibich-Verdier, Duke Math. J. {\bf 68} (1992), 217-236). In this paper, we study the generalized Lam\'{e} equation with the DTV potential \begin{equation*} y{\prime \prime }(z)=\bigg[ \sum_{k=0}{3}n_{k}(n_{k}+1)\wp(z+\tfrac{ \omega_{k}}{2};\tau)+B\bigg] y(z),\quad n_{k}\in \mathbb{N} \end{equation*} from the monodromy aspect. We prove that the map from $(\tau, B)$ to the monodromy data $(r,s)$ satisfies a surprising universal law $d\tau\wedge dB\equiv8\pi2 dr\wedge ds.$ Our proof applies Panlev\'{e} VI equation and modular forms. We also give applications to the algebraic multiplicity of (anti)periodic eigenvalues for the associated Hill operator.
- M.V. Babich and L.A. Bordag; Projective differential geometrical structure of the Painlevé equations. J. Differ. Equ. 157 (1999), 452-485.
- Y.V. Brezhnev; Non-canonical extension of ϑitalic-ϑ\varthetaitalic_ϑ-functions and modular integrability of ϑitalic-ϑ\varthetaitalic_ϑ-constants. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 689–738.
- J. Burchnall and T. Chaundy; Commutative ordinary differential operators. Proc. Lond. Math. Soc. 21 (1923), 420-440.
- Z. Chen, T.J. Kuo and C.S. Lin; Proof of a conjecture of Dahmen and Beukers on counting integral Lamé equations with finite monodromy. arXiv: 2105.04734v1 [math.NT]
- Z. Chen and C.S. Lin; Critical points of the classical Eisenstein series of weight two. J. Differ. Geom. 113 (2019), 189-226.
- S. Dahmen; Counting integral Lamé equations by means of dessins d’enfants. Trans. Amer. Math. Soc. 359 (2007), 909-922.
- F. Gesztesy and R. Weikard; Picard potentials and Hill’s equation on a torus. Acta Math. 176 (1996), 73-107.
- F. Gesztesy and R. Weikard; Treibich-Verdier potentials of the stationary (m)KdV hierarchy. Math. Z. 219 (1995), 451-476.
- K. Okamoto; Studies on the Painlevé equations. I. Sixth Painlevé equation PVIsubscript𝑃𝑉𝐼P_{VI}italic_P start_POSTSUBSCRIPT italic_V italic_I end_POSTSUBSCRIPT. Ann. Mat. Pura Appl. 146 (1986), 337-381.
- E. Poole; Introduction to the theory of linear differential equations. Oxford University Press, 1936.
- K. Takemura; The Hermite-Krichever Ansatz for Fuchsian equations with applications to the sixth Painlevé equation and to finite gap potentials. Math. Z. 263 (2009), 149-194.
- K. Takemura; The Heun equation and the Calogero-Moser-Sutherland system I: the Bethe Ansatz method. Comm. Math. Phys. 235 (2003), 467-494.
- K. Takemura; The Heun equation and the Calogero-Moser-Sutherland system III: the finite-gap property and the monodromy. J. Nonl. Math. Phys. 11 (2004), 21-46.
- K. Takemura; The Heun equation and the Calogero-Moser-Sutherland system IV: the Hermite-Krichever Ansatz. Comm. Math. Phys. 258 (2005), 367-403.
- K. Takemura; The Heun equation and the Calogero-Moser-Sutherland system V: generalized Darboux transformations. J. Nonl. Math. Phys. 13 (2006), 584-611.
- A. Treibich and J. L. Verdier; Revetements exceptionnels et sommes de 4 nombres triangulaires. Duke Math. J. 68 (1992), 217-236.
- A.P. Veselov; On Darboux-Treibich-Verdier potentials. Lett. Math. Phys. 96 (2011), 209-216.
- E. Whittaker and G. Watson; A course of modern analysis. Cambridge University Press, 1996.