Decide finiteness of the mean first passage time at the critical square-root barrier
Ascertain whether the mean first passage time E[τ] is finite or infinite for the first passage time τ of the geometric Brownian motion V_t = V_0 exp((μ − σ^2/2) t + σ W_t) through a continuous barrier B(t) when B(t) oscillates around or asymptotically equals the critical barrier B_c(t, σ) = K exp((μ − σ^2/2) t + σ sqrt(t)), namely in the cases where (a) liminf_{t→∞} B(t)/B_c(t, σ) < 1 and limsup_{t→∞} B(t)/B_c(t, σ) > 1 both hold, or (b) lim_{t→∞} B(t)/B_c(t, σ) = 1 but B(t) is not uniformly bounded above by B_c(t, σ).
References
Indeed, the finiteness of the first moment of the FPT remains undecidable in certain cases, including those for which $$\liminf\limits_{t\rightarrow\infty}\dfrac{B(t)}{B_c(t,\sigma)} < 1 \qquad \text{and} \qquad \limsup\limits_{t\rightarrow\infty}\dfrac{B(t)}{B_c(t,\sigma)} > 1$$ hold simultaneously. Even the simpler case $$\lim\limits_{t\rightarrow\infty}\dfrac{B(t)}{B_c(t,\sigma)}=1$$ remains undecidable according to this classification (unless $B(t) \le B_c(t,\sigma)$).