Orientation-reversing case: uniqueness and form of the chaotic attractor in R^{(2)}_0
Establish that for the two-dimensional border-collision normal form f_ξ(x,y) = (τ_L x + y + 1, −δ_L x) for x ≤ 0 and (τ_R x + y + 1, −δ_R x) for x ≥ 0, with parameters ξ = (τ_L, δ_L, τ_R, δ_R) in the orientation-reversing region R^{(2)}_0 = { ξ ∈ Φ^{(2)} | φ^−(ξ) > 0, φ^+(g(ξ)) ≤ 0, α(ξ) < 0 }, the map has a unique chaotic attractor with one connected component equal to the closure of the unstable manifold W^u(X) of the right-half-plane saddle fixed point X = (−1/(τ_R − δ_R − 1), δ_R/(τ_R − δ_R − 1)). Here Φ^{(2)} = { ξ ∈ Φ | δ_L < 0, δ_R < 0 }, Φ = { ξ | τ_L > |δ_L + 1|, τ_R < −|δ_R + 1| }, g(ξ) = (τ_R^2 − 2δ_R, δ_R^2, τ_L τ_R − δ_L − δ_R, δ_L δ_R), α(ξ) = τ_L τ_R + (δ_L − 1)(δ_R − 1), φ^+(ξ) = δ_R − (τ_R + δ_L + δ_R − (1 + τ_R)λ_L^u)λ_L^u, and φ^−(ξ) = δ_R − (δ_R + τ_R − (1 + λ_R^u)λ_L^u)λ_L^u, with λ_L^u and λ_R^u the unstable eigenvalues of A_L and A_R respectively.
References
We conjecture that throughout R{(2)}_0 the map has a unique chaotic attractor with one connected component equal to the closure of the unstable manifold of X, as in Fig.~\ref{fig:typ_pp_2}-a.